PhD Qualifying Exam Presentation

1:30 PM – Tuesday, April 5th, 2016
Rice Hall, Room 504

Md Mustafizur Rahman

Advisor: Hongning Wang

Attending Faculty: Worthy Martin (Chair), Westley Weimer, Kamin Whitehouse

Title: Hidden Topic Sentiment Model

Abstract: Various topic models have been developed for sentiment analysis tasks. But the simple topic-sentiment mixture assumption prohibits them from finding fine-grained dependency between topical aspects and sentiments. In this project, we build a Hidden Topic Sentiment Model (HTSM) to explicitly capture topic coherence and sentiment consistency in an opinionated text document to accurately extract latent aspects and corresponding sentiment polarities. In HTSM, 1) topic coherence is achieved by enforcing words in the same sentence to share the same topic assignment and modeling topic transition between successive sentences; 2) sentiment consistency is imposed by constraining topic transitions via tracking sentiment changes; and 3) both topic transition and sentiment transition are guided by a parameterized logistic function based on the linguistic signals directly observable in a document. Extensive experiments on four categories of product reviews from both Amazon and NewEgg validate the effectiveness of the proposed model.

Events PhD Qualifying Exam Student Defenses Student News

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s